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TECHNICAL ABSTRACTS

DETERMINATION OF GLOBAL REACTION RATE DURING LASER INDUCED DECOMPOSITION AT STATIC
HIGH PRESSURES
T.P. Russell and G.I. Pangilinan, Chemistry Division, Naval Research Laboratory, (Presented at the
1998 March Meeting of the American Physical Society, Held in Los Angeles CA, March 1998).

The laser induced decomposition of hexahydro-1,3,5-trinitro-1,3,5 triazine (C3H6N6O6 ,RDX),
trinitro azetidine (C3H4N3O6 , TNAZ) and ammonium perchlorate (NH4ClO4 ,AP) at static high
pressure in the range of 0.6-2.0 GPa is presented. The samples are loaded in a gem anvil cell and
the reaction is induced with a single laser pulse (514 nm, 6 µs duration, 3-22 J/cm2). The
dynamic chemical processes are probed using time resolved ultraviolet/visible absorption
spectroscopy, during and up to 20 µs after the laser pulse. In all three materials, decomposition
is characterized by a time-dependent increase in absorbance from 300-500 nm. This absorption
change is directly proportional to the mole fraction of reaction and provides a measurement of
the global reaction rate. The reaction rate is determined to be dependent on the sample, the
initial pressure, and the laser fluence. The chemical decomposition is modeled using a three
term reaction rate equation encompassing initiation, growth, and coalescence. A description of
the differences in the decomposition kinetics for each material will be provided. Finally, the
implications of these measurements to models of macroscopic energy release rates will be
addressed.

CHARACTERIZATION OF RAMAN SPECTRAL CHANGES IN ENERGETIC MATERIALS AND PROPELLANTS
DURING HEATING
N.F. Fell Jr, J.A. Vanderhoff, R.A. Pesce-Rodriguez and K.L. McNesby, Weapons and Materials
Research Directorate, Army Research Laboratory, Aberdeen Proving Ground, MD 21005 (Army
Research Laboratory Final Report ARL-TR-1743, 32 pp., August 1998).

Raman spectroscopy has been shown to be a useful tool for characterizing neat crystalline
explosive samples and for identifying principle components in many propellant and explosive
formulations. Herein, we report recent measurements of Raman spectra of explosives and
propellant formulations during bulk heating and recent measurements of laser heating of the
samples during measurement of Raman spectra. The results of these measurements are
important to investigators using Raman spectroscopy to measure vibrational spectra of burning
propellant samples.
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CHARACTERIZATION OF TURBULENT FLAMES BY RAMAN, RAYLEIGH AND LIF LASER TECHNIQUES
W. Meier, O. Keck, V. Bergmann, D. Wolff, V. Jorres and W. Stricker, Institut fur Physikalische
Chemie der Verbrennung, DLR Stuttgart, Pfaffenwaldring 38, D-70569 Stuttgart (Work-in-Progress
Poster Presented at the 27th International Symposium on Combustion, Held in Boulder CO, August
1998).

Two different types of nonpremixed turbulent flames were investigated by single-pulse laser
techniques: (1) A jet diffusion flame (Re=15200) fueled by a mixture of CH4 , H2 , and N2 and (2)
a confined swirling natural gas/air flame (Re=42900). The main goals of the investigations have
been the development and study of various quantitative and qualitative laser techniques and the
measurement of comprehensive data sets which yield a detailed characterization of these flames
and which can be used for the validation of mathematical flame models.
A flashlamp pumped dye laser (489 nm, 2µs pulse duration, 2 J pulse energy) was used for the
excitation of spontaneous Raman and Rayleigh scattering. From the Raman signals, the PDFs of
the major species concentrations (CH4 , H2 , O2 , N2 , H2O, CO2 , CO) have been determined in
quantitative pointwise measurements with a spatial resolution of 0.6 mm. The temperature was
deduced from the total number density and, in addition, from the Rayleigh scattering signals
using the actual Rayleigh cross section determined from the Raman data. The radial profiles of
the mean values and rms fluctuations which have been derived from the PDFs yield a general
characterization of the flames and the correlations between various quantities give an insight
into more subtle processes of the turbulence-chemistry interaction. Effects of differential
diffusion and flame stretch have been identified and will be discussed in the poster.
In addition to the point measurements, two-dimensional distributions of OH, CH, NO and
temperature have been measured in order to visualize the structures within the flames. For
these measurements, the output of a Nd:YAG pumped optical parametric oscillator was formed
to a light sheet and irradiated vertically into the flame. The laser induced fluorescence and
Rayleigh scattering were detected by an intensified CCD camera. The LIF signals of OH and CH,
which served as an indicator for the size and shape of the reaction zones, revealed that the
turbulent flowfield of the jet flame was laminarized in the flame zone in the near-nozzle region.
Further downstream, the OH distributions became broad and diffuse, whereas the CH
distributions remained thin, indicating that the reactions take place in the thin flamelet-like
layers throughout the flame. The 2-D images of LIF from NO reflected the structures of the
flowfield and showed an increasing NO level with growing downstream position caused by
accumulation of NO in the exhaust gas. The 2-D Rayleigh scattering signals were converted into
quantitative temperature distributions reflecting, for example, temperature gradients, thermal
dissipation rates, and the occurrence of local flame extinction.
The poster will discuss various aspects of the measuring techniques and the characteristics of
the flames investigated. Model calculations for these flames are currently in progress by several
research groups and we hope to present some comparisons between experimental and
theoretical results.

MILLIMETER-WAVE TIME RESOLVED STUDIES OF THE FORMATION AND DECAY OF CO+

L. Oesterling, E. Herbst and F. De Lucia, Ohio State University (Presented at the 1998 Joint
Meeting of the American Physical Society and the American Association of Physics Teachers, Held in
Columbus OH, April 1998).

Since the rate constants for ion-molecule interactions are typically much larger than neutral-
neutral interactions, understanding ion-molecule interactions is essential to interpreting radio
astronomical spectra from interstellar clouds and modeling the processes which lead to the
formation of stars in these regions. We have developed a cell which allows us to study ion-
molecule interactions in gases at low temperatures and pressures by using an electron gun
technique to create ions. By centering our millimeter-wave source on a rotational resonance and
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gating the electron beam on and off, we are able to study the time-dependent rotational state
distribution of the ion during its formation and decay, and so learn about excitation and
relaxation processes as functions of temperature, pressure, electron beam energy, and electron
beam current.

PHOTOIONIZATION CROSS SECTION OF THE 6P3/2 STATE OF CESIUM
B.M. Patterson, T. Takekoshi and R.J. Knize, U.S. Air Force Academy (Presented at the 1998
Meeting of the American Physical Society Division of Atomic, Molecular and Optical Physics, Held in
Santa Fe NM, May 1998).

We report measurements of the photoionization cross section for the 6P3/2 state of cesium. Cross
sections were determined for a range of wavelengths by measuring the photoionization rate of
cesium atoms confined in a magneto-optical trap. The photoionization rate was determined by
monitoring the decay of trap fluorescence after exposure to ionizing laser radiation. One series
of measurements was made using an Ar ion laser for discrete wavelengths between 458 and 502
nm. Preliminary results at 488 nm indicate a cross section of 1.3x10−17 cm2. Additional
measurements are being carried out over a continuous wavelength range of 400 to 500 nm using
a mode-locked fs Ti:Saphire laser.

CHEMI-IONIZATION OF EXCITED MERCURY
R.L. Martin, J.S. Cohen and L.A. Collins, Los Alamos National Laboratory (Presented at the 1998
Meeting of the American Physical Society Division of Atomic, Molecular and Optical Physics, Held in
Santa Fe NM, May 1998).

We report calculations of the chemi-ionization cross sections for the collisions of Mercury (Hg) atoms
in the excited 3P and 1P states, examining both the Penning and Associative Ionization mechanisms.
The Hg2** system presents an intricate situation for chemi-ionization. Chemi-ionization is not
energetically possible when only one of the atoms is excited. Some of the asymptotes correlating to
two excited (3P) atoms still lie just below the Hg+ energy, so only associative ionization is possible,
while others lie just above it, enabling both associative and Penning ionization. Potential energy
curves for the excited neutral and the ion molecular states are generated using relativistic core
potentials and full configuration interaction involving the active electrons. The influence of core-
valence correlation and the errors associated with the interaction curves will be discussed. We will
present cross sections for both Penning and associative ionization.

QUANTITATIVE MODEL FOR SPIN-POLARIZED PENNING IONIZATION OF O2

G.H. Rutherford, Department of Physics, Illinois State University (Presented at the 1998 Meeting of
the American Physical Society Division of Atomic, Molecular and Optical Physics, Held in Santa Fe NM,
May 1998).

Penning ionization in gas phase collisions between He(23S) metastable atoms and simple
molecules has in recent years been aided by electron spin labeling, in which the He electrons are
spin-polarized via optical pumping and energy-resolved spin polarization measurements are
made on the ejected electrons. Such data for O2 show the effects of depolarizing mechanisms in
that the ejected electron polarization is only about one-third that of the metastable atoms, and
clear structure in the energy-resolved polarization data is seen. We present a quantitative model
for these data that uses angular momentum coupling and an assumed shape for each product
ion state's contribution to the electron energy distribution. The effect of the transition to a
strongly attractive ion-pair entrance potential is described. It appears that spin-orbit coupling in
the collision complex prior to ionization is negligible.
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PHOSPHOROUS COMPOUNDS AS FLAME INHIBITORS: ANALYSIS OF IONIC INTERMEDIATES
P. Hebgen and K.-H. Homann, Institut fur Physikalische Chemie, Technische Universitat
Darmstadt, Petersenstr. 20, D-64287 Darmstadt, Germany (Work-in-Progress Poster Presented at the
27th International Symposium on Combustion, Held in Boulder CO, August 1998).

A current issue is to find substitutes for the generally used halogen-containing flame
suppressants because of their ozone depleting qualities. Phosphorous compounds are also know
to be effective flame inhibitors.
Analysis of the intermediates that are formed in phosphorus-doped flames is necessary for the
understanding of the inhibition mechanisms. The large electron affinities of the phosphorus
oxides and related compounds offer a good chance to detect the intermediate species in the
inhibiting mechanism and the products from reactions with flame radicals in the form of their
respective ions.
Negative and positive flame ions from a premixed low pressure (27 mbar) ethyne/oxygen flame
doped with 0.1 mol-%) of trimethyl phosphate or tris(dimethylamino)phosphine were analyzed
with a reflectron time-of-flight mass spectrometer in the mass range up to 400 u. The velocity of
the unburned gas was 42 cm/s and the C/O ratio was varied in the range from 0.4 to 1.0(φ=1 to
2.5).
Most of the negative ions are the anions of polyphosphoric acids, which are ionized by
scavenging electrons from the flame. The ions with the highest concentrations correspond to the
molecular formulas PO3

−(79 u), HP2O6
−(159 u), and H2P3O9

−(239 u), while PO2
−(63 u), P3O8

−

(221 u), and H2P4O11
−(301 u) are less abundant by more than a factor of 10. The ions could be

divided into different groups depending on their structure. With the knowledge of the structure,
a P/H/O matrix could be set up, wherein the ions appear as  a band. The structure of the
positive ions follows a rather complicated system of different principles.
The results obtained from the flame ions show that the doping substances originally decompose
at their P-O and P-N bonds, respectively, the fragments reacting with the flame radicals. This
can clearly be seen from the negative flame ions, where the high affinity of phosphorus to
oxygen-containing radicals, O and OH, is demonstrated.
The investigation of the positive flame ions supports this observation. Besides the reactions with
oxygen-containing radicals, there were ions that indicated also reactions with hydrocarbon
radicals and H-atoms.
In the case of tris(dimethylamino)phosphine, the N(CH3)2-groups support the inhibition in two
ways. On the one hand, the P-N bond decomposes easily, whereby the inhibitory effect of the
phosphorus is increased. On the other hand, the resulting nitrogen containing radicals can also
scavenge radicals and inhibit the flame.
The high concentrations of the product species from the inhibiting reactions at low distances
from the burner show that the doping substances decompose already at low temperatures, that
is, at the beginning of the combustion process. By that, radicals like H, O, and OH which
promote the combustion processes are taken away. This causes a slow-down of the combustion.

EXPERIMENTAL EVALUATION OF CORONA DISCHARGE REACTOR FOR REMOVAL OF NOX AND SMOKE
IN DIESEL EXHAUST
T. Morimune, Shonan Institute of Technology, 1-1, Tsujidoh Nishikaigan, Fujisawa, Japan (Work-
in-Progress Poster Presented at the 27th International Symposium on Combustion, Held in Boulder CO,
August 1998).

In order to remove the NOx  and smoke contained in diesel exhaust gas, the gas is excited by
passing through a corona discharge reactor in a high electric voltage field. An electrostatic
smoke collector (ESC) is designed to collect diesel smoke particles electrically on a central
electrode and smoke will be removed by a controlled burning (regeneration) process every 20
minutes. In a corona discharge reactor for NOx removal (DRNR), the NO is oxidized to NO2 , and
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OH radical generated from H2O in the gas reacts with the NO2 . NOx concentration decreases as
a result of formation of HNO3 . The ESC contains a 54 mm diameter tube with a 6 mm diameter
roll of nichrome wire serving as a central electrode. The NOx removal reactor has a copper wire
electrode of 1.6 mm diameter. The discharge instability of ESC by the smoke accumulation on
the electrodes is investigated, and a smoke removal rate, >90%, is obtained during 20 minutes
under the condition of 16 kV, 2mA. As for DRNR, the effects of H2O content in the exhaust gas
and inlet temperature on the NOx reduction are discussed. The NOx removal rate, >80%, is
obtained under the input power of 90 W (30 kV, 3 mA) and a gas flow rate of 15 liters/min.

LASER INDUCED INCANDESCENCE MEASUREMENTS OF SOOT CONCENTRATION AND PARTICLE SIZE
J.H. Frank, K.R. McManus, M.G. Allen and W.T. Rawlins, Physical Sciences Inc., 20 New England
Business Center, Andover, MA 01810 (Work-in-Progress Poster Presented at the 27th International
Symposium on Combustion, Held in Boulder CO, August 1998).

There exists an increasing need for nonintrusive measurements of soot number density and
particle size in practical combustion devices. An optical probe for the detection of soot particles
in gas turbine combustors and exhausts is currently under development. The probe is based on
the technique of laser induced incandescence (LII), in which soot particles are rapidly heated by
a pulsed laser, and the resulting thermal radiation from the particles is detected. The LII signal is
proportional to the initial soot concentration. This proportionality depends on several factors,
including the laser energy absorbed by the particles, heat and mass loss from the particles by
vaporization, and conductive heat loss from the particles to the surrounding gas. Each of these
factors is dependent on particle size, and together they govern the initial heating rate,
maximum temperature and cooling rate of the particles.
In developing an LII-based probe, we have conducted a detailed investigation of the LII
technique. Experiments were performed in premixed and nonpremixed ethylene/air flames.
Laser extinction measurements above a premixed flat flame were used to calibrate the LII signal
for determining soot concentrations. To test the sensitivity of the LII technique, the soot
concentration in the flat flame was varied by changing the equivalence ratio. The results
demonstrated the feasibility of LII measurements of soot concentration spanning five orders of
magnitude. Particle size measurements were performed by determining the soot temperature and
the particle cooling rates from the LII signal. This required a detailed study of the spectral and
temporal characteristics of the LII emission. We conducted such a study in a coannular laminar
nonpremixed flame, for which the soot characteristics have been extensively documented in the
literature. A gated spectrometer was used to record the spectrum of the LII signal during a 30 ns
period with varying time delays relative to the laser pulse. The resulting spectra showed good
agreement with blackbody radiation spectra that were corrected for variations in soot emissivity.
These results indicated that the soot temperature and cooling rates could be accurately measured
with a high-speed pyrometer. Subsequently, a fast-response two-color pyrometer was used to
measure the particle temperatures as a function of time. Particle sizes were determined by
comparing the measured soot temperatures and cooling rates with those predicted by a model of the
conductive cooling process. Measurements of particle vaporization rates differed significantly from
predictions of an equilibrium vaporization model.
The results indicate the LII can provide nonintrusive measurements of soot concentrations at low
levels relevant to exhaust emissions of gas turbine engines. Implications for particle sizing
measurements with LII will be discussed.
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ON SOOT YIELD AND SOOT MASS FORMATION IN THE PYROLYSIS OF ACETYLENE/BENZENE
MIXTURES
H. Jander, D. Tanke, T. Thienel, Physikalische Chemie, Universitat Goettingen, Tammannstrasse
6, D-37077 Goettingen, and H. Bohm, Physikalische Chemie, Universitat Bielefeld,
Universitatsstrasse 25, D-33615 Bielefeld, Germany (Work-in-Progress Poster Presented at the 27th
International Symposium on Combustion, Held in Boulder CO, August 1998).

In the pyrolysis of C2H2 and C6H6 , the variation of the mixture ratio of the these hydrocarbons
on the soot yield and the soot mass growth rates was studied. The experimentally determined
soot mass growth rates were compared with computed formation rates of high molecular
polyaromatic hydrocarbons (PAH). The total carbon content of the mixtures was maintained at a
constant value of 6 mol/m3. The temperature in the determined pyrolysis was 2000 K, and the
pressure 6.0 MPa.
The experiments were carried out behind reflected shock waves in a 70 mm inner diameter steel
shock tube consisting of a 4.5 m driven section and a 3.5 m driver section. Piezo-electric
pressure conductors were used to measure the shock speed and the pressure time profile. Shock
parameters were computed on the base of the standard procedure using the measured incident
shock speed. The conversion of hydrocarbon to soot was determined by the attenuation of the
light beam from a 15 mW He-Ne laser at 632.8 nm. The extinction profiles I(t) were converted
into soot yield profiles SY(t) using Beer's law, a refractive index of m=1.57-0.56i, a soot density
of 1.86 g/cm3 and the molar mass of carbon. The test gas mixtures were prepared
manometrically and mixed by convection. The gases C2H2(>99.6%), and Ar(>99.9%) were used
without further purification. Benzene (>99.9%) was purified by distillation.
The formation rates of high molecular PAH were computed taking the combinative ring-ring
condensation of aromatics into account. In the experiments, it was found that the soot yield as
well as the soot mass growth rates strongly depend on the mixture ratio of C2H2 /C6H6 in the
pyrolysis gases. The drastic decrease of the soot mass growth rates with increasing C2H2 content
of the mixtures is in line with the computed decline of the formation rate of high molecular
PAH.

GROWTH OF NANO-PARTICLES IN AN ACETYLENE RADIOFREQUENCY DISCHARGE
G. Chandhoke, C. Eggs and U. Kortshagen, University of Minnesota, Mechanical Engineering, 111
Church Street SE, Minneapolis, MN 55455 (Presented at the 51st Annual Gaseous Electronics
Conference and the 4th International Conference on Reactive Plasmas, Held in Maui HI, October 1998).

The growth mechanism of nano-sized carbon particles has been investigated. Particles were
grown in a capacitively coupled radiofrequency discharge. Pure acetylene (C2H2) as well as argon
diluted acetylene have been used as feed gases at different flow rates, pressures and discharge
powers. Growth behavior of particles was studied by transmission electron microscopy (TEM)
measurements after different plasma-on times ton(1s<ton<60s). For ton>10 s these
measurements clearly show two different size groups of particles. The average size of the
smaller particles remains constant at approximately 30 nm whereas larger particles of the
second group continue to grow. The particle surface grows at a constant rate and for ton=60 s
the particle diameter is approximately 350 nm (at Pdischarge=50 W, 100 mtorr). The elemental
composition of the particles was determined by X-ray photoelectron spectroscopy. From the
infrared spectra of the particles the hydrogen content and the amount of double and triple C
bonds was estimated and compared to the feed gas C2H2 .
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EFFECTS OF GAS FLOW ON PARTICLE GROWTH IN SILANE RADIOFREQUENCY DISCHARGES
Y. Matsuoka, M. Shiratani, T. Fukuzawa and Y. Watanabe, Kyushu University, Japan, and K. Kim,
Kangwon National University, Korea (Presented at the 51st Annual Gaseous Electronics Conference
and the 4th International Conference on Reactive Plasmas, Held in Maui HI, October 1998).

Effects of gas flow on particle growth in silane radiofrequency discharges are studied mainly
using a polarization-sensitive laser light-scattering method. Gas of He+SiH4 (5%) is supplied
from the radiofrequency shower electrode and exhausted from the grounded mesh electrode. For
80 Pa and radiofrequency power (6.5 MHz) of 80 W, particle growth rate increases to a
maximum value of 40 nm/s when increasing the gas flow rate from 2 to 10 sccm, then the rate
decreases considerably with further increasing the flow rate to 30 sccm. The former increase is
mainly attributed to the increase in supply of short-lifetime radicals contributing to the rapid
particle growth. The latter decrease suggests that neutral clusters, a diffusion time of which is
longer than a gas residence time in the particle growth region, play a significant role in particle
growth. For all the flow rates, particles begin to be observed around plasma/sheath boundary
near the radiofrequency electrode and some of them flow to the grounded electrode after they
grow above 100 nm and then trapped around plasma/sheath boundary there. Moreover some
particles above 120 nm flow through the grounded mesh electrode into the downstream region
at a certain time in the discharging period. This result implies that some large particles may
deposit on the film surface in CVD reactors having shower radiofrequency electrode.

CHARACTERIZATION OF PARTICLE GROWTH IN A SILANE PLASMA
M.A. Childs, A. Gallagher, JILA, NIST and University of Colorado at Boulder (Presented at the 51st
Annual Gaseous Electronics Conference and the 4th International Conference on Reactive Plasmas, Held
in Maui HI, October 1998).

Particles grow in silane plasmas used to make amorphous silicon films, and some particles
escape the plasma and become incorporated in the film. We report measurements of particle size
and density as a function of discharge parameters in the initial states of a  radiofrequency,
parallel plate discharge. When the particles are large enough to be observable (radius R>4 nm),
the particles usually grow linearly in time at a rate consistent with growth by SiH3 . The data
indicate that more rapid growth occurred for R<2 nm; possible causes for this will be presented.
An exception to linear growth for R>4 nm occurs at higher pressures and radiofrequency
voltages: the growth rate increases after an induction period, perhaps due to SimHj with m>1.

ATOMIC SPECTRA DATABASE
D.E. Kelleher, W.C. Martin, W.L. Wiese, A. Musgrove, J.R. Fuhr, J. Sugar, J. Reader, K.J. Olsen,
P.J. Mohr and G.R. Dalton, National Institute of Standards and Technology (Presented at the 1998
Meeting of the American Physical Society Division of Atomic, Molecular and Optical Physics, Held in
Santa Fe NM, May 1998).

Our Atomic Spectra Database contains data for radiative transitions and energy levels in atoms
and atomic ions. The URL is: http://physics.nist.gov/asd. Version 2.0, which will be put on-line
this year, includes data for observed transitions of 99 elements and energy levels of 52 elements.
It contains data on 950 spectra, with 70,000 energy levels and 90,000 lines from 0.1 nm to
200 µm, 40,000 of which have transition probabilities. All current NIST-evaluated data
associated with each transition are combined under a single listing. Many options, search
criteria, and a "Help" file are provided. Energy level data are included for most spectra of
H-Kr(Z=1-36), Mo(Z=42), plus up to the first five spectra of the rare earth elements (Z=57-71).
Classified lines with transition probabilities are included for most spectra of H-Ni(Z=1-28),
including new extensive transition probability tables for C, N, and O, and selected transition
probabilities are listed for the first two spectra of Cu-Es(Z=29-99). At a minimum, wavelengths
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with relative intensities are included for the prominent lines of up to the first five spectra of all
elements, and comprehensive wavelength lists of classified lines with relative intensities are
included for all spectra of Mg, Al, S, Sc, plus Be(I), O(II) and Ne(I).

A CLASS IV CHARGE MODEL FOR MOLECULAR EXCITED STATES
J. Li, B. Williams, C.J. Cramer and D.G. Truhlar, Department of Chemistry and Supercomputer
Institute, University of Minnesota, Minneapolis, MN 55455 (to Appear in the J. Chem. Phys.).

We present a new parameterization for calculating class IV charges for molecules containing H,
C, N, O, F, Si, P, S, Cl, Br, and I from wave functions calculated at the intermediate-neglect-of-
differential-overlap-for-spectroscopy (INDO/S) level. First we readjust the oxygen parameters in
INDO/S on the basis of electronic excitation energies; this yields a new set of parameters called
INDO/S2. Then we parameterize the charge model. The new model, called Charge Model 2 for
INDO/S2 (CM2/INDO/S2), is parameterized against the most accurate available data from both ab
initio and experimental sources for dipole moments of ground and excited electronic states. For
a training set containing 211 dipole moments of molecules in their ground states and 33 dipole
moments of molecules in their first excited states, the CM2/INDO/S2 model leads to an RMS error
in dipole moments of 0.26 D for ground states and 0.40 D for the excited states. The new model,
INDO/S2 with CM2, systematically improves the n→π* excitation energies and the dipole
moments of the excited states of carbonyl compounds. We also parameterized a CM2 model for
the standard INDO/S model (CM2/INDO/S), which predicts quite accurate dipole moments for
ground states with an RMS error of 0.24 D.

STRUCTURE AND BONDING IN THE B3Π STATE OF CAr
K. Sohlberg, Oak Ridge National Laboratory, and D.R. Yarkony, The Johns Hopkins University
(Presented at the 1998 Meeting of the American Physical Society Division of Atomic, Molecular and
Optical Physics, Held in Santa Fe NM, May 1998).

A spectroscopic study of the BAr van der Waals molecule [Yang and Dagdigian, J. Chem. Phys.
106, 6596 (1997)] revealed that the C2∆ State has a remarkably large binding energy,
De≈3600 cm−1. Associated theoretical work [Sohlberg and Yarkony, J. Phys. Chem. 101, 3166 (1997)]
demonstrated that this surprisingly strong bonding can be described in terms of a new and unusual
type of correlation-sensitive dative bonding. This unusual electronic structure is also reflected in a
large external heavy atom effect (HAE) on the spin-orbit coupling of the C2∆ and 14Π states.
Similar but less pronounced bonding was demonstrated in BNe [Sohlberg and Yarkony, J. Phys.
Chem. 101, 9520 (1997)]. These results inspired us to investigate the bonding in the B3Π state of
CAr, as well as its spin-orbit coupling to the repulsive 5Σ state. Preliminary results show that
the CAr B3Π state is strongly bound and that its spin-orbit coupling to the 5Σ state exhibits the
HAE. The possible role of the new correlation-sensitive dative bonding and/or Rydberg orbital
penetration effects will be addressed.

INITIAL AND FINAL STATE ANGULAR MOMENTUM ALIGNMENT IN THE ENERGY POOLING PROCESS:
Ca(4s4p 3P1+Ca(4s4p 3P1)→ Ca(4s4p 1P1)+Ca(4s2)
H.V. Parks and S.R. Leone, JILA and Department of Physics, University of Colorado, Boulder, CO
80309 (Presented at the 1998 Meeting of the American Physical Society Division of Atomic, Molecular
and Optical Physics, Held in Santa Fe NM, May 1998).

A detailed experimental study of the effects of initial Ca(4s4s 3P1) state polarization and the resulting
final Ca(4s4p 1P1) state polarization in Calcium energy pooling is described. The initial state is
aligned when it is excited from the ground state by a polarized laser pulse. Large periodic
modulations in the energy pooling cross section are seen as the polarized initial states precess in
an applied magnetic field. Seven of the eight parameters needed to completely describe the
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initial m-sublevel dependence of this j=1 plus j=1 collision process are obtained. The alignment
of the final Ca(4s4p 1P1) state is also studied. In addition, the coarse energy dependence of the
polarization effects is deduced.

LIFETIME MEASUREMENTS OF CESIUM 5d2D5/2,3/2 AND 11s2S1/2 STATES USING PULSED LASER
EXCITATION
D. Diberardino, C.E. Tanner, University of Notre Dame, and A. Sieradzan, Central Michigan
University (Presented at the 1998 Meeting of the American Physical Society Division of Atomic,
Molecular and Optical Physics, Held in Santa Fe NM, May 1998).

We report measurements of the 5d2D5/2 , 5d2D3/2 and 11s2S1/2 state lifetimes in the 133Cs atom to
be 1281(9) ns, 909(15) ns, and 351(4) ns, respectively. A pulsed-dye laser selectively excites
atomic Cs from the ground state via a single-photon quadrupole transition to the 5d states and
via a two-photon electric dipole transition to the 11s state. A spectrometer-photomultiplier
system detects the fluorescence from the decay of interest and a digitizing oscilloscope records
the direct output of the photomultiplier. The data is fit to an exponential function to yield a
value for the mean lifetime of the selected state.

SOLVENT INDUCED SPIN-ORBIT RELAXATION OF I(2P1/2) IN I2
−(CO2)n AND I2

−(OCS)n CLUSTERS
A. Sanov, S. Nandi, T. Sanford and W.C. Lineberger, JILA, National Institute of Standards and
Technology and Department of Chemistry and Biochemistry, University of Colorado, Boulder, CO
80309 (Presented at the 1998 Meeting of the American Physical Society Division of Atomic, Molecular
and Optical Physics, Held in Santa Fe NM, May 1998).

Solvent induced spin-orbit relaxation of I(2P1/2) is studied following ultraviolet photodissociation
of I2

− within I2
−(CO2)n and I2

−(OCS)n clusters. While ultraviolet dissociation of isolated I2
− results

in exclusive production of I−+I(2P1/2), within a cluster interaction with the solvent induces
nonadiabatic coupling of the I−+I(2P1/2) and I−+I(2P3/2) potentials and leads to dissociation on
both I(2P1/2,3/2) spin-orbit asymptotes or I2

− recombination. The production of I(2P) in both spin-
orbit states, separated by 1 eV of energy, is manifest as a bimodal size distribution of ‘uncaged'
I−(CO2)k and I−(OCS)k products. The nonadiabatic coupling occurs at long I-I− range and is
several times stronger in I2

−(CO2)n , compared to I2
−(OCS)n clusters. Evidence of different

relaxation time scales in I2
−(CO2)n and I2

−(OCS)n clusters is presented.

ELECTRONIC QUENCHING RATE CONSTANTS FOR Kr(5s[3/2]1 and 5s′ [1/2]0) and Xe(6s[3/2]1 , 6s′
[1/2]1 AND SELECTED 6p, 6p′ AND 7p) STATES BY VARIOUS REAGENTS AT 300 K
D.W. Setser, Department of Chemistry, Kansas State University, Manhattan, KS 66506 (Presented
at the 51st Annual Gaseous Electronics Conference and the 4th International Conference on Reactive
Plasmas, Held in Maui HI, October 1998).

Various laser based techniques, including pulsed one-photon excitation from the Xe(6s[3/2]2)
and Kr(5s[3/2]2) metastable states, optical pumping from the metastable state, pulsed two-
photon excitation from the ground state and pulsed two-photon amplified stimulated emission
(ASE), have been used to selectively prepare a broad distribution of electronically excited states
of Xe and Kr. Subsequent monitoring of the fluorescence from these states in the presence of
added reagents permits two-body quenching rate constants to be measured. In many cases the
products also have been identified, and state-to-state rate constants have been assigned.
Examples of Kr* and Xe* excited states with different reagents will be selected to display
various collisional properties of the Xe* and Kr* states, such as the role of the Xe+(2P3/2) and
Xe+(2P1/2) ion-cores in intramultiplet relaxation processes and in reactive quenching with
halogen containing molecules. The systematic increase in magnitude of quenching constants for
a common reagent with increasing electronic energy of the Xe(6s,6s′,6p,6p′,7p) states will be
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presented. Two pairs of Xe(6p′,7p) states have a very large (~200 A2) cross sections for
intramultiplet transfer by collision with He and Ar; these large cross sections can be explained
by a Demkov coupling mechanism. The majority of the presentation will be a description of the
time-resolved two-photon ASE experiments, which provide a pulsed laboratory source of the
Xe(6s[3/2]1), Xe(6s′[1/2]1) and Kr(5s[3/2]1) resonance states. By monitoring their resonance
fluorescence in the vacuum ultraviolet, the decay rates of these Kr* and Xe* resonance states
can be observed in the presence of added reagent gas and the two-body quenching rate constants
can be measured with excellent reliability. The two-body rate constants for the resonance states
obtained from these experiments will be compared to those for the Xe and Kr metastable states,
which have been available for about 20 years.

CHEMICAL GENERATION OF NCl(a1∆) MOLECULES BY THE REACTION OF CHLORINE ATOMS WITH
AZIDE RADICALS AND MEASUREMENTS OF QUENCHING RATE CONSTANTS OF NCl(a1∆)
K.B. Hewett, G.C. Manke II and D.W. Setser, Department of Chemistry, Kansas State University
(Presented at the 51st Annual Gaseous Electronics Conference and the 4th International Conference on
Reactive Plasmas, Held in Maui HI, October 1998).

The first electronically excited state of NCl, the a1∆ state with a lifetime of about 2 s and an
energy of 1.15 eV, is a candidate for gas phase energy-storage applications. The NCl (a1∆)
molecule can be generated with a high efficiency by the reaction of Cl atoms with the azide
radical, N3 , which is generated by the F+HN3 reaction. The room temperature, gas phase
experiments consist of adding F and Cl atoms together with HN3 to a pre-reactor section of a
flow reactor with typical initial concentrations of [HN3]=2.0x1012, [F]=2.5x1012 and
[Cl]=2.0x1012 molecules cm−3 in 1 torr of Ar carrier gas. The flow reactor is a 7.0 cm diameter
Pyrex glass pipe of 150 cm length. The reactor walls were coated with halocarbon wax to
prevent the loss of F and Cl atoms and NF(a) and NCl(a) molecules by reaction at the walls. The
F- and Cl-atom reaction rates with HN3 and N3 are sufficiently fast that the HN3 is converted to
NF(a) and NCl(a) in the pre-reactor. The NF(a) and NCl(a) relative concentrations are
monitored along the flow reactor by observing the (a-X) transitions at 874 and 1077 nm,
respectively, with a cooled photomultiplier tube. Quenching reagents are added to the main
reactor and the pseudo first-order decay rates of NF(a) and NCl(a) are observed and converted
to bimolecular rate constants.

O2(b1Σg
+), O(1D) AND (O2

++e) RECOMBINATION IN THE LOWER THERMOSPHERE
D.L. Huestis, T.G. Slanger, SRI International, and J.P. Fulbright and D.E. Osterbrock, University of
California Observatories/Lick Observatory (Presented at the 51st Annual Gaseous Electronics
Conference and the 4th International Conference on Reactive Plasmas, Held in Maui HI, October 1998).

Night sky spectra taken with the HIRES spectrometer at the Keck I telescope on Mauna Kea have
revealed emissions from O2(b1Σg

+) in vibrational levels up to v′=15. Previously only v′=0 was known
in the nightglow. Emissions from v′=1 are unexpectedly strong, comparable to v′=2, and variable
from scan to scan. v′=1 emissions are visible up to J′=50 (requiring a temperature of more than
500 K, such as in the thermosphere), while v′=2 emissions are restricted to J′<25 (consistent with a
temperature of 200 K near the mesopause, where O+O recombination would peak). Considering that
quenching of v′=1 is about ten times faster than v′=2, we infer that separate mechanisms are
responsible for production of v′=1 and the other vibrational levels. The principal source of v′=1
appears to be O2

++e→O(1D), followed by O(1D)+O2→O2(b1Σg
+)v′=1 . At twilight, this process should

have a maximum emission yield below 150 km, rising to about 250 km as the night progresses.
Simultaneous observation of O(1D) and O2(b1Σg

+)v′=0,1,2 should provide new information about kinetics
in the thermosphere.



11

RELATIVE BAND OSCILLATOR STRENGTHS IN THE FOURTH POSITIVE SYSTEM OF CO
K.L. Menningen and J.B. Stoll, University of Wisconsin-Whitewater, and D.C. Knauth, W. Lee and
S.R. Federman, University of Toledo (Presented at the 1998 Joint Meeting of the American Physical
Society and the American Association of Physics Teachers, Held in Columbus OH, April 1998).

An optical absorption experiment using synchrotron radiation as a continuum source was used
to measure band oscillator strengths in the (A1Π-X1Σ) electronic spectrum of CO. When
referenced to the well established (5,0) band oscillator strength, our relative values for the (7,0)
to (11,0) bands are most consistent with the recent experiments of Chan et al. and the
theoretical predictions of Kirby and Cooper. These results help to resolve a discrepancy among
experimental determinations of the CO band strengths, so that analyses of interstellar CO based
on absorption from (A-X) bands are no longer hindered by uncertainties in oscillator strength. A
similar technique is being applied to higher lying transitions in the CO spectrum.

OSCILLATOR STRENGTHS OF FINE-STRUCTURE TRANSITIONS IN NEUTRAL SULFUR
S.S. Tayal, Clark Atlanta University (Presented at the 1998 Meeting of the American Physical Society
Division of Atomic, Molecular and Optical Physics, Held in Santa Fe NM, May 1998).

Oscillator strengths and transition probabilities of electric-dipole-allowed and intercombination
transitions from fine-structure levels of the ground 3s23p4 configuration to the levels belonging
to configurations 3p34s, 3p35s, 3p33d and 3p34d of neutral sulfur are calculated using extensive
configuration-interaction wave functions. The relativistic corrections have been included
through the Breit-Pauli Hamiltonian. Small adjustments to the diagonal elements of
Hamiltonian matrices have been made so that the energy splittings are close to the measured
values. Our oscillator strengths and radiative lifetimes are compared with several available
theoretical, empirical, and experimental results.

ATOMIC TRANSITION PROBABILITIES IN Ti
D.E. Nitz, Saint Olaf College, and M.E. Wickliffe and J.E. Lawler, University of Wisconsin-Madison
(Presented at the 1998 Meeting of the American Physical Society Division of Atomic, Molecular and
Optical Physics, Held in Santa Fe NM, May 1998).

We report the measurement of branching fractions and atomic transition probabilities for 92
lines connected to high lying, even parity levels in neutral Ti. Branching fractions are
determined from six high current hollow cathode emission spectra recorded using the Fourier
transform spectrometer at the National Solar Observatory. The absolute scale for normalizing the
branching fractions is established using radiative lifetimes from recently reported time-resolved laser
induced fluorescence measurements. Most of our reported transition probabilities are accurate to
better than ±10%.

ABSOLUTE LINE INTEGRATED DENSITIES OF CF, CF2 AND CF3 IN A GEC REFERENCE CELL
I.C. Abraham and R.C. Woods, UW-Madison Plasma ERC, and G.A. Hebner, Sandia National
Laboratories (Presented at the 51st Annual Gaseous Electronics Conference and the 4th International
Conference on Reactive Plasmas, Held in Maui HI, October 1998).

Tunable diode laser absorption spectroscopy, in the region around 1250 cm−1, was used to
measure line integrated densities of CF, CF2 and CF3 in a GEC reference cell, modified for
inductively coupled plasma operation. The addition of a quartz ring around the source region
stabilized and confined the plasma, making the plasma chemistry more like that found in
industrial etch tools. Two common etching gas chemistries, C2F6 and CHF3 , and two wafer
surfaces, bare silicon and blanket photoresist, were investigated across a range of power and
pressure Substantial amounts of undissociated C2F6 were also found in the C2F6 plasma. The
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determination of the absolute density of CF led to a reexamination of the literature data on the
value of the transition dipole moment for this radical. Our conclusion from this investigation is
that recent large scale ab initio calculations currently provide the only reliable value of this
parameter, which is required in any calculation of absolute CF densities.

ABSOLUTE CONCENTRATIONS OF CH RADICALS IN LOW PRESSURE METHANE/AIR FLAMES WITH
CAVITY RING-DOWN SPECTROSCOPY
P.A. Berg, J.B. Jeffries, G.P. Smith and D.R. Crosley, Molecular Physics Laboratory, SRI
International, Menlo Park, CA 94025, and J.J. Scherer, Los Gatos Research, 67 East Evelyn
Avenue, Mountain View, CA 94041 (Work-in-Progress Poster Presented at the 27th International
Symposium on Combustion, Held in Boulder CO, August 1998).

Cavity ring-down laser absorption spectroscopy (CRDS) is used to determine the number density
of CH radicals in low pressure, steady, laminar methane/air flames. The results compare well
with earlier absolute CH radical concentration measurements made with laser induced
fluorescence (LIF). The flames are supported on a standard McKenna, porous plug burner with a
6 cm flame diameter. CRDS signals are readily observed using the CH(A-X) transition near
430 nm. With the laser wavelength tuned off resonance the ring-down time of 30 µs is
dominated by the mirror reflectivity; whereas, tuned to a Q branch transition the ring-down
time in a fuel rich (Φ=1.27) flame decreases to 10 µs at the peak of the CH structure in the
flame. This corresponds to 18 ppm CH in this 30 torr flame which is in quite good agreement
with our earlier quantitative LIF measurements.
The application of CRDS to flame measurements is discussed. Like any absorption measurement,
variations in concentration and temperature along the line of sight path complicate the
interpretation of CRDS measurements. The spatial resolution of CRDS is limited by the focal
parameters of the ring-down cavity and the laser divergence. However, CRDS provides a
quantitative determination of absorption from time resolved measurements, which eliminates
the need for precise measurements of absolute intensity or the need for an intensity stabilized
laser light source. The combination of spatially resolved LIF and CRDS provides an opportunity
for precise spatially resolved quantitative measurements of trace quantities of chemical
intermediate free radicals.

SIMULTANEOUS PLANAR IMAGING OF OH-LIPF AND SHADOWGRAPHS AND PLANAR IMAGING OF CH-
LIF IN A TWO-DIMENSIONAL VALVELESS PULSE COMBUSTOR
Y. Ishino, T. Hasegawa, S. Yamaguchi and N. Ohiwa, Department of Mechanical Engineering,
Nagoya Institute of Technology, Japan (Work-in-Progress Poster Presented at the 27th International
Symposium on Combustion, Held in Boulder CO, August 1998).

Using a novel optical system, simultaneous imaging of Schlieren photography and OH-LIPF
(Laser Induced Predissociation Fluorescence) have been carried out to examine combustion
processes and flame structure in a two-dimensional valveless pulse combustor. Planar CH-LIF
imaging have also been made, in order to obtain information on the behavior of the flame front
during a cycle of pulsation.
The pulse combustor of a forced-ventilated type consists of a combustion chamber of a volume
of 125 cm3 and a tailpipe of a length of 976 mm, which is followed by an automobile muffler.
The fuel used is commercial grade gaseous propane. The combustor is operated under a set of
conditions of a fuel flow rate of QfN=4.0 l/min, an air flow rate of QaN=103.5 l/min, an overall
equivalence ratio of φ=0.92 and a pulsation frequency of f0=137.5 Hz. Four quartz glass
windows are employed for planar optical access.
In order to get simultaneous detection of OH-LIPF and shadowgraph images, two types of optical
systems are combined with a beam-splitter (an uncoated quartz glass plate of 4 mm thickness),
which is placed on the axis of the Schlieren optical system at 45°, so that the planar images of
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OH-LIPF can be acquired simultaneously with the Schlieren images in the same direction. A
tunable excimer laser (LPX150t; Lambda Physic) tuned to a wavelength of 248.5 nm is used for
the planar OH-LIPF imaging. To detect the LIPF image at a wavelength of 308 nm due to (3,0)
band of the (A2Σ-X2Π) system, employed is an image-intensified CCD camera (Streak Star II; La
Vision) with a UV-lens (UV-Nikkor, 105 mm, F4.5) and an optical filter (center wavelength 330
nm, FWHM 85 nm) equipped. The Schlieren optical system used is composed of a Z-configuration
concave mirror system and a flash (20 µs) Xenon lamp.
In the case of CH-LIF imaging, the excimer-laser-pumped dye laser which is tuned to a
wavelength of 387 nm is used. The fluorescence at a wavelength of 431.5 nm due to (0,0) band of
the (B2Σ-X2Π) system is detected with an optical filter (center wavelength 432.6 nm, FWHM 10.3
nm) and the CCD camera system above mentioned.
The results obtained in this investigation are summarized as follows.
(1) According to the simultaneous imaging of OH-LIPF and shadowgraphs and the planar
imaging of CH-LIF, it is found that combustion takes place along the boundaries of a pair of
large scale eddies of inflowing fresh mixture, but not within the entire eddy regions, exhibiting a
pair of earlobe-shaped flame contours.
(2) It is also found that OH-radicals never disappear in the combustion chamber during the
period of pulsation, although reacting flame front does not exist until the next fresh charge.
This shows that the intermittent ignition is considered to be due to the combined effects of the
thermal and chain-reaction processes in the residual hot combustion products in the last cycle.
These results point out an important concept which should be taken into account for designing
a new devised pulse combustion system.

TWO-PHOTON ABSORPTION LASER INDUCED FLUORESCENCE OF ATOMIC NITROGEN BY AN
ALTERNATIVE EXCITATION SCHEME
S.F. Adams, Air Force Research Laboratory, Wright-Patterson AFB, OH, and T.A. Miller, The Ohio
State University, Columbus OH (Presented at the 51st Annual Gaseous Electronics Conference and the
4th International Conference on Reactive Plasmas, Held in Maui HI, October 1998).

A new two-photon absorption laser induced fluorescence (TALIF) scheme to monitor the ground
state atomic nitrogen produced in a gas discharge is characterized. Excitation at 207 nm to the
(3p)4S3/2

o upper state is demonstrated to be superior to the traditional 211 nm excitation to
(3p)4D7/2

o. Most striking is the low quenching rate of the upper (3p)4S3/2
o state by N2 at

kq=6.7x10−11 cm3/s, nearly an order of magnitude lower than the traditional technique. The two-
photon excitation rate at 207 nm is also measured to be a factor of 3 greater than the traditional
scheme. The advantage in signal strength of the new TALIF scheme is shown to be especially
pronounced at N2 pressures above 1 torr. The TALIF technique is also compared to the indirect
technique of measuring atomic nitrogen density by monitoring the nitrogen afterglow emission.
In a discharge through varying mixtures of H2 with N2 , it is shown that it is necessary to
include the quenching effects of H2 and H atoms on the N2(B3Πg ,v=11) state for the afterglow
measurements to agree with the N-atom TALIF data.

DETAILED KINETIC MODELING OF POLYCYCLIC AROMATIC HYDROCARBONS IN ETHENE DIFFUSION
FLAMES
J.C. Hewson and N.J. Brown, Environmental Energy Technologies Division, Lawrence Berkeley
National Laboratory, Berkeley, CA 94720, and M. Frenklach, Department of Mechanical
Engineering, University of California, Berkeley, CA 94720 (Work-in-Progress Poster Presented at the
27th International Symposium on Combustion, Held in Boulder CO, August 1998).

The mechanisms by which aromatic compounds are formed in ethene diffusion flames are
studied using a detailed chemical kinetic model. Our starting model has previously been tested
against measurements in premixed flames and jet-stirred reactors. In the present work,
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predictions for major species and stable intermediates including aromatics up to pyrene are
compared with measurements in counterflow ethene diffusion flames. Preliminary results
suggest that, because of differing flame structure, different reaction paths play the principal
role in diffusion and premixed flames. Additional reactions involving C3H5 and C3H6 were
necessary to bring C3H4 and benzene into agreement with measured values. Predictions for
species as large as single-ring aromatics are in quantitative agreement with measured values,
while two-ring aromatics are underpredicted by about 50%. Reactions of propargyl and reactions
between C4 and C2 species contribute to the formation of the first ring. These reactions are
highly reversible; the propargyl route is the least reversible and therefore provides the majority
of the net production of benzene. Analysis of reaction pathways responsible for growth of larger
aromatics is in progress.

EXPERIMENTAL STUDY OF THE STRUCTURE OF SEVERAL NON-SOOTING RICH PREMIXED
ACETYLENE FLAMES
R. Ancia, P.J. Van Tiggelen and J. Vandooren, Laboratoire de Physico-Chimie de la combustion,
Universite Catholique de Louvain, Belgium (Work-in-Progress Poster Presented at the 27th
International Symposium on Combustion, Held in Boulder CO, August 1998).

Four low pressure premixed acetylene/oxygen/argon flames with equivalence ratio (φ) of 1.00,
1.50, 2.00 and 2.25 have been investigated. The initial percentage of O2 has been kept identical
in all flames to facilitate comparisons between flames. Signal intensity profiles of stable, atomic
and radical species were measured by using mass spectrometry coupled with molecular beam
sampling. Absolute concentrations have been obtained by an appropriate calibration and by
measuring the corresponding temperature profiles in each individual flame by means of a
PtRh6%/PtRh30% thermocouple. An increase of the maximum mole fractions of C3H3 , C4H2 ,
C4H4 and C4H6 , with the equivalence ratio is demonstrated.
Rate coefficients of consumption reactions of acetylene with oxygen atoms and hydroxyl radicals
have been deduced and compared with the literature data.

C2H2+O→Products k=5.66x1014 exp(-3061/T) (φ=1.00)
k=4.27x1014 exp(-3331/T) (φ=1.50)

C2H2+OH→CH3+CO k=4.0x1013 exp(-6584/T) (φ=1.00)
k=7.6x1013 exp(-6791/T) (φ=1.50)

Rate coefficients of reactions of H atoms with C2H2 , C4H2 , C4H4 and C6H2 have been determined
around 1500 K.

C2H2+H→Products k=1.78x1011 cm3 mol−1 s−1

C4H2+H→Products k=4.10x1011

C4H4+H→Products k=1.11x1012

C6H2+H→Products k=1.62x1012

DETERMINATION OF RATE COEFFICIENTS FOR REACTIONS OF FORMALDEHYDE PYROLYSIS AND
OXIDATION IN THE GAS PHASE
B. Eiteneer, C.-L. Yu, M. Goldenberg and M. Frenklach, Department of Mechanical Engineering,
University of California, Berkeley, CA 94720 (Work-in-Progress Poster Presented at the 27th
International Symposium on Combustion, Held in Boulder CO, August 1998).

Seven mixture of formaldehyde and oxygen diluted in argon were studied behind reflected shock
waves at temperatures from 1340 to 2270 K and pressures from 0.7 to 2.5 atm. Formaldehyde
was produced by thermal decomposition of its trimer, 1,3,5-trioxane behind the reflected shock
front. Mixture compositions were chosen based on preliminary sensitivity analysis and were as
follows: Series A, 1.97% CH2O/Ar; Series B, 1.46% CH2O/Ar; Series C, 1.47% CH2O/0.25% O2 /Ar;
Series D, 1.00% CH2O/0.60% O2 /Ar; Series E, 1.50% CH2O/1.50% O2 /Ar; Series F, 0.49%
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CH2O/1.98% O2 /Ar; Series G, 1.00% CH2O/5.96% O2 /Ar. The progress of reaction was monitored
by infrared laser absorption of CO molecules at (2→1), P(10) transition.
Kinetic information was deduced from the experimental data by matching the initial part of the
CO profiles, from the onset of reaction up to the maximum in the absorption signal. Preliminary
numerical analysis showed that the remaining part of the CO profiles (that is, after the
maximum) was mostly sensitive to the reaction CO+OH→H+CO2 and hence did not provide
additional information on formaldehyde reactions. Thus, each experimental profile was
represented by three characteristic points, t0.25 , t0.50 , and t0.75 , the times at which the CO signal
reached 0.25, 0.50 and 0.75 of its maximum value, respectively.
Experimental rates of CO formation were found to be 80% higher, in the case of pyrolysis, and
30% lower, under lean oxidation, than those predicted by the current reaction model, GRI-Mech
1.2. The collected experimental data were subjected to extensive detailed chemical kinetics
analysis, including optimization with the solution mapping technique. The analysis identified a
strong correlation between two rate constants, k1a and k2 . Assuming a recent literature
expression

k2=5.74x107 T1.9 exp(-1380/T) cm3 mol−1 s−1

for
H+CH2O→HCO+H2 (2)

produced
k-1a=2.66x1024 T−2.57 exp(-215/T) cm6 mol−2 s−1

for
H+HCO+M→CH2O+M (1a)

A new expression was developed for
HO2+CH2O→HCO+H2O2 (6)
k6=4.11x104 T2.5 exp(-5136/T) cm3 mol−1 s−1

by fitting the present and literature results. With these modifications, the new reaction model
provides good agreement with our experimental data and an acceptable agreement with most
literature experimental observations.

DENSITY FUNCTIONAL STUDIES ON THE RATE CONSTANTS FOR THE REACTION OF N2O WITH O, OH
AND CO
K. Tsuchiya, H. Shiina and M. Oya, National Institute for Resources and Environment, 16-3
Onogawa Tsukuba Ibaraki 305-8569, Japan, and K. Kamiya, Faculty of Science, Kitasato
University, 1-15-1 Kitasato Sagamihara Kanagawa 228-8555, Japan (Work-in-Progress Poster
Presented at the 27th International Symposium on Combustion, Held in Boulder CO, August 1998).

The reactions of N2O with O(3P), OH and CO have been studied by ab initio molecular orbital
and statistical theoretical calculations. The molecular orbital calculations were performed using
the GAUSSIAN 94 program. The Becke's hybrid functional (B3LYP) in density functional methods
was used with Dunnings' correlation consistent triple-zeta basis set (cc-pVTZ). Rate constants
for the reactions were calculated with conventional transition theory with the Wigner's
tunneling correction and compared with experimental data reported previously.
The N2O+O(3P) reaction has two products channels, NO+NO and N2+O2 . Barrier heights for
the two competitive pathways were calculated to be 18 and 33 kcal/mol, respectively, including
zero-point energy correction. Although comparable values of branching ratio for the product
channel have been reported in some experiments by fitting to complex mechanism, this
calculation suggested that the first path is favorable. Calculated overall rate constants for this
reaction and rate constants for the reverse reaction of the first path, that is,
NO+NO→N2O+O(3P) are consistent with experimental data.
For the N2O+OH reaction, it was indicated that the products channel of the reaction is N2+HO2

and reaction path is not correlated to the products of HNO+NO. Reaction barrier of 35 kcal/mol
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including zero-point energy correction was found. As far as we have searched, no reliable kinetic
data are available.
Experimental rate constant data for the N2O+CO→N2+CO2 reaction are in disagreement
especially in the magnitude of activation energy. The data are divided into two groups; one is
with about 19 kcal/mol of the activation energy, the other with about 48 kcal/mol. The present
calculation supported the magnitude of the latter. But the calculated pre-exponential factor of
the rate constants was found to be much less than those of experimental ones.
It was suggested by this work that rates for the N2O+OH and N2O+CO reactions are very slow
at around the temperature range of 1000-1500 K, and these reactions are unimportant for the
N2O fate in combustion.

RATES OF THE O+N2O REACTION
A. Goumri, A. Fernandez and A. Fontijn, High Temperature Reaction Kinetics Laboratory, The
Isermann Department of Chemical Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180,
and N.E. Meagher and W.R. Anderson, US Army Research Laboratory, Aberdeen Proving Grounds,
MD 21005 (Work-in-Progress Poster Presented at the 27th International Symposium on Combustion,
Held in Boulder CO, August 1998).

The reactions of N2O with O atoms are critical to models of propellant dark zone combustion
and also pertain to models of NOx pollutant formation. They are:

O+N2O→NO+NO ∆H0=-150 kJ mol−1 (1)
O+N2O→O2+N2 ∆H0=-330 (2)

Critical reviews concluded that the two channels have identical rate coefficients:
    k1(T)=k2(T)=1.7x10−10 exp(-14100 K/T) cm3 mol−1 s−1 (1200-2000 K)
However, a recent shock tube study yielded a similar result for k1 , but very different results
for k2:

k2(T)=2.3x10−12 exp(-5440 K/T) cm3 mol−1 s−1 (1940-3340 K)
Extrapolation of either k2(T) or of kt(T)=k1(T)+k2(T) to the lower temperatures typical of
propellant combustion yields results several orders of magnitude larger than previously
assumed.
Here we report lower temperature range measurements made at RPI using the High
Temperature Photochemistry (HTP) technique, which yield

kt(1076-1276 K)=2.7x10−9 exp(-14580 K/T) cm3 mol−1 s−1

A critical review of the voluminous literature and fitting of the best results, which include the
new RPI measurements, has been conducted by the ARL authors, resulting in new
recommendations.
The HTP work represents the first measurements on the overall reaction under conditions in
which results are well isolated from effects of other reactions. Thus, there is no dependence of
the results on ancillary kinetic data, as in prior studies. The possible influence of H2O on the
reactions, suggested in other studies, was modeled. The modeling predictions indeed indicate
the results would be highly sensitive to even a few ppm of H2O impurities. However,
measurements of the apparatus' leak rate show that the possible H2O impurity concentrations
must have been negligibly low. The new measurements concur with the shock tube
measurements in that the rate coefficients below 1700 K are much larger than previously
thought, but they indicate that the value at 1100 K is about 2.5 times lower than extrapolation
of the previous results.
The ARL model is based on a state-of-the-art detailed mechanism for the dark zones of solid
propellants consisting of ≈200 reactions. The appropriate subsets of reactions were extracted
from this mechanism and used for the simpler mixtures encountered in the present work. The
best rate coefficient information currently available was used without alteration except, of
course, rate coefficients for the title reaction were varied. Detailed chemical modeling,
mimicking typical conditions described in the various experiments, was done to test
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assumptions used for determination of k1 and k2 . There were three major reasons found for
rejection of a given data set from the fitted results: (i) discovery of invalid assumptions,
foremost amongst these being important errors concerning the chemical mechanism, (ii) usage
of low purity reactants, and (iii) proof that although the mechanism used to model results was
essentially correct (matches results well), the results are not very sensitive to the title reaction.
The results were fitted to obtain the recommendations for k1 and k2 :

k1(T)=1.7x10−10 exp(-14100 K/T) cm3 mol−1 s−1    (1370-3850 K)
k2(T)=6.1x10−12 exp(-8000 K/T) cm3 mol−1 s−1      (1076-3340 K)

The results for k1 agree with most prior works. The results for k2 are much larger below 1700 K
than the reviews suggest.

PHOTOFRAGMENT TRANSLATIONAL SPECTROSCOPY OF C3H3X(X=Cl,Br,H)
W. Sun, K. Yokoyama, J. Robinson and D. Neumark, University of California, Berkeley, CA, and N.
Hemmi, Lawrence Berkeley National Laboratory (Presented at the 1998 Meeting of the American
Physical Society Division of Atomic, Molecular and Optical Physics, Held in Santa Fe NM, May 1998).

Propargyl chloride, HCCCH2Cl, propargyl bromide, HCCCH2Br and allene, H2CCCH2 , are
photolyzed by a 193 and 248 nm excimer laser to produce propargyl radical, H2CCCH, with a
crossed laser-molecular beam apparatus. Photofragments are ionized in a quadrupole mass
spectrometer by energy-controlled photons from an advanced light source. In the case of 193 nm
photolysis of propargyl chloride, C3H2 has been found to have two components in its TOF spectra.
The faster component can be assigned as photofragments from a secondary photodissociation of
propargyl radical to produce H atom and C3H2 . The ionization potential of the C3H2 fast
component has been measured to be below 10 eV. This indicates that its structure is not
H2C=C=C whose IP was reported to be around 10.4 eV. Results of photolysis of the other species
and at 248 nm will be presented at this meeting.

EXPERIMENTAL AND THEORETICAL DYNAMICS OF O(3P) ATOM REACTIONS WITH SULFUR-
CONTAINING COMPOUNDS
B.R. Weiner, Department of Chemistry, University of Puerto Rico, P.O. Box 23346, UPR Station,
Rio Piedras, Puerto Rico 00931 (Presented at the 1998 Joint Meeting of the American Physical Society
and the American Association of Physics Teachers, Held in Columbus OH, April 1998).

The detailed dynamics of O(3P) atom reactions with sulfur compounds (OCS, CS2 , C2H4S,
CH3SH and CSCl2) have been studied experimentally by measuring the nascent SO(X3Σ−)
product rovibrational energy distributions, and computationally by determining the optimized
geometries of the possible reaction intermediates. Some of the reactions have important
implications in the global sulfur budget and radiation balance. Ground state O(3P) atoms are
generated by photolysis of NO2 either by the 351 nm output from a XeF excimer laser or the 355
nm output from a frequency tripled Nd-YAG laser. The SO(X3Σ−) product from the reactions is
monitored by measuring the laser induced fluorescence signal on the (B3Σ−-X3Σ−) transition in
the wavelength region of 237-312 nm. The observed vibrational distributions vary from
statistical to inverted and are used to determine the mechanisms of the above reactions. Franck-
Condon and statistical energy disposal models are used to simulate the nascent energy
distributions and support the proposed mechanisms. Ab initio correlated calculations at the
complete fourth-order Moller-Plesset theory (MP4 SDTQ/6-311+G*) have been performed in
order to determine the structures and relative stabilities of the proposed reactive intermediates
as well as the relative energetics of the reactants and products. The collaborative experimental
and theoretical effort has led to a greater understanding of the reaction dynamics of these
systems.
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CONTROLLING DISSOCIATION PATHWAYS AND WATCHING ENERGY FLOW IN VIBRATIONALLY
EXCITED MOLECULES
F.F. Crim, Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706
(Presented at the 1998 Meeting of the American Physical Society Division of Atomic, Molecular and
Optical Physics, Held in Santa Fe NM, May 1998).

Controlling chemical reactions using lasers is a conceptually simple notion that has proven
challenging in practice. Such control requires a detailed understanding of the initial state that
vibrational excitation creates and of the electronically excited state in which dissociation occurs.
Vibrationally mediated photodissociation provides the first examples of vibrational state control
to produce bond-selected chemistry. In these experiments, one laser prepares a vibrationally
excited molecule, another dissociates the molecule by electronic excitation, and a third probes
the products to determine their identity and quantum state populations. It is also possible to
perform time resolved vibrationally mediated photodissociation experiments using ultrafast
lasers in order to observe the intramolecular redistribution of energy in vibrationally excited
molecules. In such measurements, the electronically excited surface is a window into the
dynamics on the ground electronic state. Preparing a molecular eigenstate with one laser and
subsequently turning that stationary state into a dissociative one by electronic excitation is a
proven means of controlling the dissociation pathways in a triatomic molecule, HOD. The same
approach controls bond cleavage in a tetra-atomic molecule, HNCO, in which the two product
channels, producing either NH+CO or H+NCO, are chemically rather than isotopically distinct.
An understanding of the nature of the initially prepared vibrational states and their influence
on the photodissociation allows one to invert the process and use the dissociation step as a probe
of vibrational dynamics in the ground electronic state. The most recent experiments use
ultrafast excitation of the O-H stretching vibration in nitric acid (HONO2) with a 100 fs laser
pulse and subsequent photodissociation with another 100 fs pulse to follow the transfer energy
out of the coherently excited O-H stretching motion.

LASER ABLATION MECHANISM OF ALKALINE EARTH METALS
H. Nishikawa, M. Kanai and T. Kawai, ISIR-Sanken, Osaka University, Japan (Presented at the 1998
March Meeting of the American Physical Society, Held in Los Angeles CA, March 1998).

In order to understand the nascent process of laser ablation of metals, the amount of desorbed
monovalent ions have been measured on the laser ablation of alkaline earth metals. The
relationship between the amount of the desorbed ion and the laser fluence is I4.6(±0.2), I3.7(±0.4) and
I2.9(±0.3) for Ca, Sr and Ba, respectively, when ArF excimer laser (6.4 eV, 193 nm) is  used as a
light source. Here, I represents the laser fluence. The results can be interpreted that the
desorption is caused by 5-, 4- and 3-photon process for Ca, Sr and Ba, respectively, because such
nonlinear behavior is caused by a certain multiphoton process. Since the total photon energy of
3-, 4- and 5-ordered processes correspond to the highest core electron level for each metal, a
model has been proposed that the laser ablation of the alkaline earth metal is triggered by
excitation of the outermost core electron. The experiment using KrF excimer laser (5.0 eV, 248
nm) has been performed to give more evidence for the above mentioned model. The relationship
between the amount of desorbed ion and the laser fluence is I6.4(±1.0), I5.3(±1.2) and I3.6(±1.0) for Ca, Sr
and Ba, respectively. Such values also correspond to the outermost core level of each metal.
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AB INITIO AND DFT POTENTIAL ENERGY SURFACES FOR CYANURIC CHLORIDE REACTIONS
S.V. Pai, C.F. Chabalowski and B.M. Rice, Weapons and Materials Research Directorate, Army
Research Laboratory, Aberdeen Proving Ground, MD 21005 (Army Research Laboratory Final Report
ARL-TR-1718 , 37 pp., July 1998).

Ab initio and nonlocal density functional theory (DFT) calculations were performed to determine
reaction mechanisms for formation of the six-membered ring C3N3Cl3 (cyanuric chloride) from
the monomer, cyanogen chloride (ClCN). MP2 geometry optimizations followed by QCISD(T)
energy refinements and corrections for zero-point energies for critical points on the potential
energy surface were calculated using the 6-31G and 6-311+G basis sets. DFT(B3LYP) geometry
optimizations and zero-point corrections for critical points on the potential energy surface were
calculated with the 6-31G, 6-311+G,  and cc-pVTZ basis sets. Two formation mechanisms of
cyanuric chloride were investigated, the concerted triple association (3 ClCN→cyanuric
chloride) and the step-wise association (3 ClCN→Cl2C2N2+ClCN→cyanuric chloride). All
calculations show that the lower energy path to formation of cyanuric chloride is the concerted
triple association. MP2 and DFT intrinsic reaction coordinate (IRC) calculations starting from the
transition state (TS) for concerted triple association reaction proceeding toward the isolated
monomer resulted in the location of a local minimum, stable by as much as -8.0 kcal/mol, that
corresponds to a weakly bound cyclic (ClCN)3 cluster. The existence of this cluster on the
reaction path for the concerted triple association could lower the entropic hindrance to this
unusual association reaction mechanism.

MODELING OF VIBRATION-TO-VIBRATION AND VIBRATION-TO-ELECTRONIC ENERGY TRANSFER
PROCESSES IN OPTICALLY PUMPED PLASMAS
I.V. Adamovich, E. Ploenjes, P. Palm and J.W. Rich, Department of Mechanical Engineering, The
Ohio State University, Columbus OH, and A. Chernukho, A.V. Lykov Heat and Mass Transfer
Institute, Minsk, Belarus (Presented at the 51st Annual Gaseous Electronics Conference and the 4th
International Conference on Reactive Plasmas, Held in Maui HI, October 1998).

The paper presents the results of modeling of the optical pumping experiments in CO/N2 /O2 /Ar
mixtures. In these experiments, the low vibrational levels of carbon monoxide (v<12) are excited
by resonant absorption of the CO laser radiation. The high vibrational levels, up to v=40, are
populated by the CO-CO vibration-to-vibration (V-V) energy exchange. Time-resolved CO
infrared and ultraviolet radiation from the excited electronic states is measured by a high-
resolution step-scan Fourier transform spectrometer. The kinetic model incorporates coupled
master equation for the CO, N2 and O2 vibrational level populations, and Boltzmann equation for
the electrons. The comparison of the experimental and synthetic time-resolved spectra allowed
inference of the V-V exchange rates for CO-CO up to v=40, cross sections for the energy transfer
between the highly excited CO molecules and electrons, and V-V transfer rates for CO-N2 and
CO-O2 .

VAPOR PRESSURE OF CESIUM BETWEEN 270 AND 370 K VIA LASER ABSORPTION
R.J. Rafac and C.E. Tanner, University of Notre Dame, Notre Dame IN (Presented at the 1998
Meeting of the American Physical Society Division of Atomic, Molecular and Optical Physics, Held in
Santa Fe NM, May 1998).

For more than sixty years, experimenters have relied on the vapor pressure equations from
Taylor and Langmuir's positive ion measurements to calibrate the densities of saturated atomic
cesium vapor for numerous spectroscopic applications. We update these results with additional
data obtained via measurement of the direct absorption of narrow-band laser radiation nearly
resonant with the ground state to 62P3/2 transition. The Doppler broadened transmission of a
cesium vapor cell is recorded for several GHz of detuning using a high-precision absorption
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spectrometer. Complementary measurements of the collisional broadening of the resonance lines and
laser spectral composition are also performed, which in concert with high precision transition
strength data permit the accurate calculation of the absorption profile of the vapor. In this fashion
the absolute vapor densities at various temperatures are determined and related to the observed
transmission spectra. Good agreement is established with the early experiments. These
measurements also allow the determination of the heat of sublimation of cesium at absolute zero,
76.5(1) kJ/mol.
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Degradation of Solids Incorporating Finite-Rate Kinetics," Combust. Sci.
Technol. 123, 261-285 (1997).

Polymer
Solid Combustion
Thermal
Degradation
Pyrolysis
Model

(77910) Fullerenes, AB-Graphitic Structures Formation Polymer
Combustion

(78098) IR Laser Pyrolysis, Regression Rate, Surface Temperature, Activation
Energy

Polybutadiene

77711. Chao, Y.H.C., and A.C. Fernandez-Pello, "Forced Ignition of a Solid Fuel
in a Turbulent Boundary Layer Oxidizing Flow," pp. 409-431 in Physical
and Chemical Aspects of Combustion: A Tribute to Irvin Glassman, F.L.
Dryer and R.F. Sawyer, eds., 505 pp., 17 Papers Presented at a
Colloquium Held at Princeton NJ, October 1993, Gordon and Breach
Science Publishers, Amsterdam, The Netherlands (1997).

PMMA
Heating
Ignition
Boundary Layer
Flows
Turbulence Effects

77712. Novozhilov, V., D.J.E. Harvie, A.R. Green and J.H. Kent, "A
Computational Fluid Dynamic Model of Fire Burning Rate and
Extinction by Water Sprinkler," Combust. Sci. Technol. 123, 227-245
(1997).

PMMA Fires
Burning Rates
Water Spray
Extinction
CFD Model

7.  CATALYTIC COMBUSTION

77713. Boehman, A.L., J.W. Simons, S. Niksa and J.G. McCarty, "Dynamic
Stress Formation During Catalytic Combustion of Methane in Ceramic
Monoliths," Combust. Sci. Technol. 122, 257-303 (1997).

Catalytic
Combustion
CH4

Ceramic Monoliths
Thermal Stress
Analysis

(77662) Catalytic Combustion, Sintered Metal Burner, CO, NO Emissions,
Model

CH4 /Air

77714. Au, C.-T., M.-S. Liao and C.-F. Ng, "A Detailed Theoretical Treatment of
the Partial Oxidation of Methane to Syngas on Transition and Coinage
Metal (M) Catalysts (M=Ni,Pd,Pt,Cu)," J. Phys. Chem. A. Mol.,
Spectrosc., Kinetics 102, 3959-3969 (1998).

Catalytic
Partial
Oxidation
CH4 /O2 /Metal
Theoretical
Modeling
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77715. Elokhin, V.I., and E.I. Latkin, "Statistical Model of Oscillation and Wave
Effects on the Surface of a Catalyst in the Reaction of CO Oxidation,"
Dokl. Phys. Chem. 344, 209-214 (1995).

Catalytic
Oxidation
CO/O2

Oscillations
Model

77716. Kuzovkov, V.N., O. Kortluke and W. von Niessen, "Kinetic Oscillations
in the Catalytic CO Oxidation on Pt Single Crystal Surfaces: Theory and
Simulation," J. Chem. Phys. 108, 5571-5580 (1998).

Catalytic
Oxidation
CO/O2 /Pt
Kinetic
Oscillations
Sticking
Coefficient
Role

77717. Her, T.-H., R.J. Finlay, C. Wu and E. Mazur, "Surface Femtochemistry
of CO/O2 /Pt(111): The Importance of Nonthermalized Substrate
Electrons," J. Chem. Phys. 108, 8595-8598 (1998).

Catalytic
Oxidation
CO/O2 /Pt
ps Laser Induced
Nonthermal
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77718. Saracco, G., J.W. Veldsink, G.F. Versteeg and W.P.M. van Swaaij,
"Catalytic Combustion of Propane in a Membrane Reactor with Separate
Feed of Reactants. III. Role of Catalyst Load on Reactor Performance,"
Chem. Eng. Commun. 147, 29-42 (1996).

Catalytic
Combustion
C3H8 /Air
Membrane
Reactor
Performance

77719. Barelko, V.V., Yu.E. Volodin and E.S. Gen'kin, "Catalytic Emission of
Charged Particles in the Course of Ammonia Oxidation on Platinum,"
Dokl. Phys. Chem. 341, 63-65 (1995).
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Oxidation
NH3 /O2 /Pt
Charged Particle
Role

77720. Tomishko, M.M., I.A. Nevskii, V.S. Beskov and A.V. Putilov, "Plasma in
a Zone of Catalytic Oxidation," Dokl. Phys. Chem. 341, 59-62 (1995).

Catalytic
Oxidation
SO2 /Air/Fe2O3

Charged Particle
Role

8.  MHD

9.  TEMPERATURES

(77661) Temperatures, Porous Burner Combustion, CH4 , C2H2 , H2 Fuels,
Propagation, Stabilities

Superadiabatic

(77709) Near Surface Temperatures, RDX Oscillatory Combustion Rates,
Measurements

Thermocouples
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(77706) Temperature Profiles, RDX Self-Deflagrating, Measurements Thermocouple/
Absorption

77721. Block, B., W. Hentschel and W. Ertmer, "Pyrometric Determination of
Temperature in Rich Flames and Wavelength Dependence of Their
Emissivity," Combust. Flame 114, 359-369 (1998).

Temperatures
Pyrometry
Rich Flame
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Emissivity
Measurements
Method

(78098) Surface Temperatures, IR Laser Pyrolysis of Polybutadiene, Regression
Rates, Activation Energy

Optical
Pyrometry

(77708) Temperature, Species Profiles, RDX Propellant Flames FTIR Absorption

77722. Glumac, N.G., "Flame Temperature Predictions and Comparison with
Experiment in High Flow Rate, Fuel-Rich Acetylene/Oxygen Flames,"
Combust. Sci. Technol. 122, 383-398 (1997).

Temperatures
LIF
C2H2 /O2

Measurements
Kinetic Modeling
Discrepancies
Flow Rate Effects

(77769) Temperatures, OH LIF, Imaging, Turbulent CH4 , CH3OH, C2H5OH
Diffusion Flames

Rayleigh

10.  IGNITION

77723. Griffiths, J.F., and C. Mohamed, "Experimental and Numerical Studies
of Oxidation Chemistry and Spontaneous Ignition Phenomena," Chapter
6 in Low Temperature Combustion and Autoignition, M.J. Pilling, ed., 7
Chapters, 794 pp., Comprehensive Chemical Kinetics 35, 545-660 (1997).

Auto-ignition
Hydrocarbons
Mechanisms
Modeling
Review

77724. Walker, R.W., and C. Morley, "Basic Chemistry of Combustion," Chapter
1 in Low Temperature Combustion and Autoignition, M.J. Pilling, ed., 7
Chapters, 794 pp., Comprehensive Chemical Kinetics 35, 1-124 (1997).

Auto-ignition
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Cool Flames
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Kinetic Mechanisms
Review

(78248) CO, H2 , Hydrocarbons/O2 , Oscillatory Kinetics, Nonlinear
Mathematics, Review

Auto-ignition

77725. Blumenthal, R., K. Fieweger, K.H. Komp and G. Adomeit, "Gas
Dynamic Features of Self-Ignition of Non-Diluted Fuel/Air Mixtures at
High Pressure," Reprint (Due to Publishing Errors), Originally
Published in Combust. Sci. Technol. 113/114, 137-166 (1996) (Bulletin
#97, Reference 69437), ibid. 123, 389 (1997).
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Delay Times
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Comparisons
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(78253) Fuel Knocking Tendencies, n-C7H16 /O2 , Jet Stirred Reactor, Species
Profiles, MTBE, ETBE Additive Effects
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(77838) I.C. Engines, Pressure Pulses, Predictive Models, Review Auto-ignition

(77843) Diesel Engine, Natural Gas Fueled, CFD/Kinetic Modeling Auto-ignition

77726. Gel'fand, B.E., S.P. Medvedev, S.V. Khomik, O.E. Popov, A.Yu.
Kusharin and G.L. Agafonov, "Self-Ignition of Hydrogen/Oxygen
Mixtures at High Initial Pressures," Dokl. Phys. Chem. 349, 183-186
(1996).

Self-Ignition
H2 /O2

High Pressure
Ignition Delays
Discrepancies
Shock Tube

77727. Aivazyan, R.G., "Critical Conditions of Monosilane Self-Ignition with
Oxygen and Chain Branching Ratios," Kinet. Catal., Russia 38, 174-184
(1997).

Self-Ignition
Limits
SiH4 /O2

Chain Branching
Mechanism

(77690) Ignition/Combustion, Melting/Gravitational Sedimentation Role, Model Heterogeneous
Solid Mixtures

(77695) Ignition, Small Lumps, Pressure, O2 Effects B(s)/O2 /N2

77728. Kiselev, S.P., and V.P. Kiselev, "Ignition of Pulverized Coal Particles in
Shock Waves," J. Appl. Mech. Techn. Phys., Russia 36, 347-353 (1995).

Ignition
Coal Particles
Shock Tube
Numerical Analysis

(77670) Hot Surface, Ignition Temperatures, Dolomite, Limestone Admixture
Effects

Coal Dust

(77671) Ignition Temperatures, Salt Catalysis, Metal Ionization Potential and
H2O Effects

Coal

(77697) Impact Ignition, Mechanisms, Review Energetic Materials

(77711) Ignition, Turbulent Boundary Layer Oxidizing Flow PMMA

77729. Kreutz, T.G., and C.K. Law, "Ignition in Nonpremixed Counterflowing
Hydrogen versus Heated Air: Computational Study with Skeletal and
Reduced Chemistry," Combust. Flame 114, 436-456 (1998).

Ignition
Counterflow
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Reduced Scheme
Kinetic Modeling

77730. Sheu, W.J., and M.C. Lin, "Ignition of Nonpremixed Wall-Bounded
Boundary-Layer Flows," Combust. Sci. Technol. 122, 231-255 (1997).
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77731. Mendez, F., and C. Trevino, "Ignition in a Vertical Wall in Contact with
a Combustible Gas: Catalytic Reactions in One Surface of the Plate,
"Combust. Theory Modeling 1, 167-182 (1997).
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Catalytic
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Combustible Gases
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77732. Veser, G., J. Frauhammer, L.D. Schmidt and G. Eigenberger, "Catalytic
Ignition during Methane Oxidation on Platinum: Experiments and
Modeling," pp. 273-284 in Dynamics of Surfaces and Reaction Kinetics
in Heterogeneous Catalysis, G.F. Froment and K.C. Waugh, eds.,
Proceedings of the International Symposium Held in Antwerp, Belgium,
September 1997, 53 Papers, 597 pp., Elsevier, Amsterdam, The
Netherlands (1997).

Ignition
Temperatures
Catalytic
CH4 /Air/Pt
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(77703) ADN, NH4N(NO2)2 , Gaseous Species, Probe Sampling, Mass Analysis Laser Ignition

11.  COMBUSTION THEORY/PROPAGATION/STABILIZATION

77733. De Goey, L.P.H., and J.H.M.T.T. Boonkkamp, "A Mass-Based Definition
of Flame Stretch for Flames with Finite Thickness," Combust. Sci.
Technol. 122, 399-405 (1997).

Flame Stretch
Definition
Flame Front
Thickness
Effects

77734. Blouquin, R., G. Joulin and Y. Merhari, "Combustion Regimes of
Particle-Laden Gaseous Flames: Influences of Radiation, Molecular
Transports, Kinetic-Quenching, Stoichiometry," Combust. Theory
Modeling 1, 217-242 (1997).

Combustion Theory
Inert Solid
Seeding
Flame Structure
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77735. Libby, P.A., and M.D. Smooke, "The Computation of Flames in
Stagnation Flows," Combust. Sci. Technol. 127, 197-211 (1997).

Combustion Theory
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Impinging Jets
Flow Structure
Formulations

77736. Cor, J.J., and M.C. Branch, "Studies of Counterflow Diffusion Flames at
Low Pressures," Combust. Sci. Technol. 127, 71-88 (1997).

Counterflow
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Diffusion Flames
CH4 /N2O,O2

CO/N2O
T,Species Profiles
Kinetic Modeling

77737. Bedir, H., J.S. T'ien and H.S. Lee, "Comparison of Different Radiation
Treatments for a One-Dimensional Diffusion Flame," Combust. Theory
Modeling 1, 395-404 (1997).
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Radiative
Heat Transfer
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77738. Abramovich, G.N., "Initial Section of Gas Nozzle-Burner Flame with
Unsymmetrical Boundary Conditions," Russ. Aeronaut. 38(3), 37-41
(1995).
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Flows
CH4 ,C3H8 ,H2 /Air

77739. Pitsch, H., and N. Peters, "A Consistent Flamelet Formulation for
Nonpremixed Combustion Considering Differential Diffusion Effects,"
Combust. Flame 114, 26-40 (1998).

Diffusion Flames
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H2 /Air
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77740. Echekki, T., and J.H. Chen, "Structure and Propagation of Methanol/Air
Triple Flames," Combust. Flame 114, 231-245 (1998).
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Triple Flames
Structure
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Diffusional
Effects
DNS Analysis

77741. Clavin, P., and G. Joulin, "High Frequency Response of Premixed
Flames to Weak Stretch and Curvature: A Variable-Density Analysis,"
Combust. Theory Modeling 1, 429-446 (1997).
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Burning Speeds

77742. Chen, J.-Y., "Stochastic Modeling of Partially Stirred Reactors,"
Combust. Sci. Technol. 122, 63-94 (1997).

H2 /Air
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Partially Stirred
Reactor
Unmixedness
NO Formation
Effects,Modeling

77743. Mao, F., and R.B. Barat, "Experimental and Modeling Studies of Staged
Combustion Using a Reactor Engineering Approach," Chem. Eng.
Commun. 145, 1-21 (1996).
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77744. Najm, H.N., P.H. Paul, C.J. Mueller and P.S. Wyckoff, "On the
Adequacy of Certain Experimental Observables as Measurements of
Flame Burning Rate," Combust. Flame 113, 312-332 (1998).
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77745. Garbey, M., and D. Tromeur-Dervout, "Massively Parallel Computation
of Stiff Propagating Combustion Fronts," Combust. Theory Modeling 1,
271-294 (1997).
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Propagation
Stiff Integration
Methodology

77746. Ashurst, W.T., "Darrieus-Landau Instability, Growing Cycloids and
Expanding Flame Acceleration," Combust. Theory Modeling 1, 405-428
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Modeling

77747. Bychkov, V.V., A.I. Kleev and M.A. Liberman, "A Thin Front Model
Applied to Flame Propagation in Tubes," Combust. Flame 113, 470-472
(1998).
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Curved Flame
Velocities
Tubes
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(77724) Alkane,-ene, Low Temperature Combustion, Auto-ignition, Kinetic
Mechanisms, Review

Cool Flames

77748. Maunuksela, J., M. Myllys, O.-P. Kahkonen, J. Timonen, N. Provatas,
M.J. Alava and T. Ala-Nissila, "Kinetic Roughening in Slow Combustion
of Paper," Phys. Rev. Lett. 79, 1515-1518 (1997).

Paper
Combustion
Flame Front
Propagation
Kinetic Formulations

77749. Brailovsky, I., and G.I. Sivashinsky, "On Stabilization and Blowoff of
Inverted Spherical Flames," Combust. Sci. Technol. 122, 95-111 (1997).
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Flames
Stabilization
Theory

77750. Vedarajan, T.G., and J. Buckmaster, "Edge-Flames in Homogeneous
Mixtures," Combust. Flame 114, 267-273 (1998).

Edge Flames
Theory
Stabilities

77751. Kortsarts, Y., I. Brailovsky, S. Gutman and G.I. Sivashinsky, "On the
Stability of Stretched Flames," Combust. Theory Modeling 1, 143-156
(1997).

Stretched Flames
Stability
Flow Induced
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77752. Kortsarts, Y., I. Brailovsky and G.I. Sivashinsky, "On Hydrodynamic
Instability of Stretched Flames," Combust. Sci. Technol. 123, 207-225
(1997).

Counterflow
Flames
Instabilities
Stretch Effects
Modeling

77753. Ju, Y., H. Guo, K. Maruta and T. Niioka, "Flame Bifurcations and
Flammable Regions of Radiative Counterflow Premixed Flames with
General Lewis Numbers," Combust. Flame 113, 603-614 (1998).
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Counterflow
Premixed
Radiative Flames
Lewis Number
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(77664) Active Control, Dump Combustor, Hysterisis Method Stabilization

12.  TURBULENCE

(See also Section 14 for Turbulent Flame Velocities)

77754. Gouldin, F.C., "Analysis of Certain Algebraic Closure Models for
Premixed Turbulent Combustion," pp. 433-459 in Physical and
Chemical Aspects of Combustion: A Tribute to Irvin Glassman, F.L.
Dryer and R.F. Sawyer, eds., 505 pp., 17 Papers Presented at a
Colloquium Held at Princeton NJ, October 1993, Gordon and Breach
Science Publishers, Amsterdam, The Netherlands (1997).

Turbulent
Combustion
3 Closure Models
Assessments
Premixed Flames

77755. Denet, B., "A Lagrangian Method to Simulate Turbulent Flames with
Reconnections," Combust. Sci. Technol. 123, 247-260 (1997).

Turbulent
Flames
Lagrangian
Formulation
Fractal
Dimension

77756. McDonough, J.M., "On Intrinsic Errors in Turbulence Models Based on
Reynolds-Averaged Navier-Stokes Equations," Fluid Mech. Res. 22(2),
27-55 (1995).

Turbulent
Modeling
Reynolds Averaging
Intrinsic Errors
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77757. Swaminathan, N., and R.W. Bilger, "Direct Numerical Simulation of
Turbulent Nonpremixed Hydrocarbon Reaction Zones Using a Two-Step
Reduced Mechanism," Combust. Sci. Technol. 127, 167-196 (1997).
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DNS Modeling
2-Step Reduced
Kinetic Scheme

77758. Sabel'nikov, V., B. Deshaies and L.F.F. Da Silva, "Revisited Flamelet
Model for Nonpremixed Combustion in Supersonic Turbulent Flows,"
Combust. Flame 114, 577-584 (1998).
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Supersonic Flows
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Flamelet Model

77759. Dyne, B.R., and J.C. Heinrich, "Finite Element Analysis of the
Scramaccelerator with Hydrogen/Oxygen Combustion," Presented
Originally as AIAA Paper 93-0745 at the 31st AIAA Aerospace Sciences
Meeting and Exhibit, Held in Reno NV, January 1993, J. Propulsion
Power 12, 336-340 (1996).
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Kinetic/Transport
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77760. Lin, C.-Y., "Effects of Da and Re on Premixed Flame Speed," Chem. Eng.
Commun. 155, 65-72 (1996).
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Re,Da Dependences
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77761. Sabel'nikov, V.A., C. Corvellec and P. Bruel, "Analysis of the Influence
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with an Eddy-Break-Up Model," Combust. Flame 113, 492-497 (1998).
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77762. Johnson, M.R., L.W. Kostiuk and R.K. Cheng, "A Ring Stabilizer for
Lean Premixed Turbulent Flames," Combust. Flame 114, 594-596 (1998).
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Lean Flames
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77763. Choi, C.R., and K.Y. Huh, "Development of a Coherent Flamelet Model
for a Spark Ignited Turbulent Premixed Flame in a Closed Vessel,"
Combust. Flame 114, 336-348 (1998).
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Flamelet Model
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77764. Furukawa, J., T. Hirano and F.A. Williams, "Burning Velocities of
Flamelets in a Turbulent Premixed Flame," Combust. Flame 113, 487-
491 (1998).
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77765. Bielert, U., and M. Sichel, "Numerical Simulation of Premixed
Combustion Processes in Closed Tubes," Combust. Flame 114, 397-419
(1998).
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77766. Zimberg, M.J., S.H. Frankel, J.P. Gore and Y.R. Sivathanu, "A Study of
Coupled Turbulent Mixing, Soot Chemistry and Radiation Effects Using
the Linear Eddy Model," Combust. Flame 113, 454-469 (1998).
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77767. Goldin, G.M., and S. Menon, "A Comparison of Scalar PDF Turbulent
Combustion Models," Combust. Flame 113, 442-453 (1998).
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Combustion
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77768. Lee, T.-W., and A. Mitrovic, "Structure of Lean Turbulent Partially-
Premixed Flames Stabilized in a Coaxial Jet Flame Burner," Combust.
Sci. Technol. 127, 231-249 (1997).

Turbulent
Coaxial Jet
Lean Premixed Flames
Rayleigh T PDFs
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Diffraction Method
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(77879) Turbulent, NOx Formation, Model CH4 ,CO/H2

H2 Jet Flames

77769. Kelman, J.B., and A.R. Masri, "Simultaneous Imaging of Temperature
and OH Number Density in Turbulent Diffusion Flames," Combust. Sci.
Technol. 122, 1-32 (1997).
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CH4 ,CH3OH,C2H5OH
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T,Rayleigh
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77770. Dally, B.B., A.R. Masri, R.S. Barlow and G.J. Fiechtner, "Instantaneous
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77771. Kuperjans, S., and I.M. Kennedy, "Measurements of NOx in Turbulent
Diffusion Flames with High Speed Co-Flow Air," pp. 69-85 in Physical
and Chemical Aspects of Combustion: A Tribute to Irvin Glassman, F.L.
Dryer and R.F. Sawyer, eds., 505 pp., 17 Papers Presented at a
Colloquium Held at Princeton NJ, October 1993, Gordon and Breach
Science Publishers, Amsterdam, The Netherlands (1997).
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13.  DETONATIONS/EXPLOSIONS

77773. Cooper, P.W., and S.R. Kurowski, "Introduction to the Technology of
Explosives," 8 Chapters, 204 pp., Wiley-VCH, Inc., New York (1996).
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14.  FLOW PHENOMENA/VELOCITIES/DIFFUSION

(See also Section 12 for Turbulent Flowfields)

77780. Raffel, M., C.E. Willert and J. Kompenhans, "Particle Image
Velocimetry: A Practical Guide," 253 pp., Springer-Verlag, Berlin,
Germany (1998).
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